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spin-lattice relaxation time Ti and second moment M 2 have been studied as a function of tem-
perature over the temperature range 445 to 77 K. A discontinuous change in Ti at 365 K, in-
dicates the presence of a phase transition, while the slope change at 152 K, is attributed to a 
change in the TMA ion dynamics from tumbling to torsion. The 7i results could be explained 
in terms of inequivalent TMA ions and their small angle torsional oscillations. A second moment 
(M2) transition occurs around 160 K and is ascribed to the freezing of TMA tumbling and C H 3 
reorientation. 
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Introduction 

Tetramethyl ammonium (TMA) ion dynamics in 
salts has been investigated, using *H NMR, by many 
workers [1-3] . Generally, the activation energy for 
the motion of the cation was found to be smaller in 
(TMA)MX 3 , (TMA) 2MX 4 and (TMA) 2MX 6 type 
complexes than in simple salts. In (TMA)2MC16 

(M = Pt, Sn, Te, Zr, U) phase transitions have been 
found around 350 K and 150 K [4, 5 - 7 , 8 -10] , We 
have now investigated XH N M R in (TMA)2SeBr6 and 
report on the results here. 

The compound was prepared following the proce-
dure of Gütbier and Engeroff [11] and was checked by 
x-ray diffraction [8-10], melting temperature, specific 
gravity [12], IR frequencies [13] and elemental analy-
sis. The proton Ti measurements were carried out 
using a home built pulsed N M R spectrometer work-
ing at 10 MHz. The second moments were calculated 
from the Fourier transformed F I D signals. The tem-
perature of the sample was varied using a gas flow 
cryostat. 

Results and Discussion 

Tetramethyl ammonium ion, being tetrahedral, has 
3 two-fold and 4 three-fold symmetry axes. The dom-

Reprint requests to Prof. J. Ramakrishna, Department of 
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inant motions are the tumbling of the T M A ion and 
the three-fold reorientation of the methyl groups. In 
the model used to explain the *H spin-lattice relax-
ation [1], the intra-methyl and inter-methyl dipole-
dipole interactions are considered to be modulated by 
these motions. 

(i) Relaxation 

The temperature variation of the relaxation time 
(TJ measured from 445 to 77 K is shown in Figure 1. 
Tj decreases from 425 K down to 365 K, where a 
small discontinuous decrease is observed. Above 
425 K the relaxation time starts decreasing rapidly 
due to melting. In the temperature range 365 K to 
152 K, Tj exhibits a BPP behaviour and shows a min-
imum of 5.4 msec at 193 K. A small change in the 
slope of the Tj plot is observed at 152 K. Between 
130 K and 77 K, Ti follows a BPP behaviour showing 
a low temperature minimum of 6.3 msec at 97 K. 

The small discontinous decrease of Tx at 365 K in-
dicates a phase transition. The activation energies 
above and below 365 K are found to be the same 
(13.8 kJ/mole). Similar phase transitions observed in 
(TMA)2MBr6 (M = Pt, Te, Sn) at slightly higher tem-
peratures ( ~ 400 K) have been identified as the Fd3c 
to Fm3m transitions [3]. The observed Ti minimum of 
5.4 msec at 193 K is much shorter than the expected 
Tx value of 9.8 msec (10 MHz) for TMA tumbling. The 
observed Tx behaviour could be explained by assum-
ing an equal number of two inequivalent TMA ions 
(Type a and b) and equivalent methyl groups [14]. The 
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Table 1. Activation energies and phase t ransi t ion t empera-
tures (Tc) in te t ramethyl a m m o n i u m h e x a b r o m o metallates. 

Fig. 1. Plot of relaxation time (Tx) vs. 1000/T in te t ramethyl 
a m m o n i u m hexab romo selenate. 

(TMA)2MBr6 Activation Motional mode Phase transi- Ref. 
energy tion temper-
(kJ/mole) atures Tc (K) 

P t B r 6 18.4 C H 3 reor ientat ion 367, 123, 97 [3] 
18.7 Over all tumbl ing 

367, 123, 97 [3] 

8.5 Small angle C H 3 
torsion 

TeBr 6 17.8 C H 3 reor ientat ion 362, 84 [3] 
19.2 Over all tumbl ing 

362, 84 [3] 

7.7 Small angle C H 3 
tors ion 

SnBr 6 15.4 C H 3 reorientat ion 3 7 1 , 9 0 [3] 
23.2 Over all tumbl ing 

3 7 1 , 9 0 [3] 

9.4 Small angle C H 3 
torsion 

SeBr 6 11.3 C H 3 reor ientat ion 365 present 
13.8(a) Over all tumbl ing work 

of a ion 
12.6(b) Over all tumbl ing 

of b ion 
3.8 Small angle T M A 

torsion 

150 250 350 450 
Temperature (K) 

Fig. 2. Tempera ture variation of second m o m e n t in tetra-
methyl a m m o n i u m hexabromo selenate. 

sional oscillation (as the slope change occurs at a 
higher temperature than the methyl Ti minimum, it 
can not be due to small angle torsion of the methyl 
groups). Following Woessner [15] the amplitude of the 
torsional oscillations (0), the correlation time t 0 and 
the activation energy are obtained as 12°, 1.2 x 10" 1 2 

sec and 3.8 kJ/mole, respectively. The second mini-
mum of 6.3 msec, observed at 92.5 K, is ascribed to 
T M A torsional oscillations and C 3 reorientation of 
the methyl groups with corresponding activation 
energy and pre-exponential factor of 11.3 kJ/mole and 
5.5 x 10" 1 5 sec, respectively. A comparison of motional 
parameters and phase transition temperatures Tc with 
other members of the (TMA)2MBr6 group is given in 
Table 1. 

activation energies and the pre-exponential factors for 
the tumbling motion of the a and b type TMA ions are 
13.8 and 12.6 kJ/mole with 1.5 x 10" 1 2 and 7.8 x 10" 1 2 

sec, respectively. These activation energies are much 
smaller than the corresponding values in simple com-
pounds like TMA halides [1], indicating a large free-
dom for the TMA ions in the present compounds. The 
slope change observed at 152 K is ascribed to changes 
in TMA dynamics from tumbling to small angle tor-

(ii) Second Moment 

The temperature variation of the second moment 
in (TMA)2SeBr6 is shown in Figure 2. The second 
moment remains nearly constant at a value of 0.45 G 2 

f rom 430 K to 160 K. Below 160 K it steadily in-
creases and reaches 23 G 2 at 77 K. The small second 
moment of 0.45 G 2 observed above 160 K can be ex-
plained in terms of T M A and C H 3 reorientations. 
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Since only a single step M2 transition is observed, it 
appears that T M A and the CH 3 reorientations be-
come effective in line narrowing around the same tem-
perature. This is reasonable in view of the comparable 
activation energies for the two types of motions as 
seen from the 7\ data. Below this temperature, the 
slowing down of the T M A and C H 3 motions gives 
rise to a steady increase of the second moment. 

Similar M2 behaviour (0.6 G 2 above 150 K, and 
24 G 2 around 77 K) has been observed in (TMA)2MX6 

(M = Pt, Te, Sn; X = C1, Br) by Prabhumirashi et al. 
[2], and by Sato et al. [3]. They have also explained the 
M2 behaviour (above 160 K) in terms of the isotropic 
reorientation of the cation and the C H 3 groups while 
that around 77 K as due to the freezing of the T M A 
and methyl groups. 

Conclusions 

The data show the presence of two inequivalent 
tumbling T M A ions, TMA small angle torsion and 
methyl group reorientation. The phase transition at 
365 K, appears to be the Fd3c to Fm3m transition, as 
reported in the other (TMA) 2 MX 6 compounds. 
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